If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24=9
We move all terms to the left:
3x^2-24-(9)=0
We add all the numbers together, and all the variables
3x^2-33=0
a = 3; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·3·(-33)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*3}=\frac{0-6\sqrt{11}}{6} =-\frac{6\sqrt{11}}{6} =-\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*3}=\frac{0+6\sqrt{11}}{6} =\frac{6\sqrt{11}}{6} =\sqrt{11} $
| y=0.09+16 | | 5x10=2x-13 | | 10r=9r | | x-0.53x=150 | | 8x-68=7x-56 | | 2x+5=8x-5/5 | | y=0.07+16 | | -10r-20=-9r | | y=358,000(0.9975)^30 | | 91=7x+2 | | -1/2u-3/5=-4/3 | | 3y+15=9+6y | | -2+12h=13h-20 | | -4/3=-1/2u-3/5 | | 7=k1/9 | | 4x+x+95=180 | | 20−19x=–17x−20 | | 3x+6/2=12+4x | | 20−19n=–17n−20 | | y=0.09+10 | | -13-13n=13(13n+13) | | 6x+x+33=180 | | 2.5/0.8=180/x | | y=7+16 | | 3(2z=10)=-12 | | 26x-30=4x+22 | | 10/x=30/21 | | 5x-3.1=7.9 | | 2x-78+3x-97=180 | | 2.50.8=180x | | P+2z=52 | | 116+32+6c+4=180 |